Parallel Algorithm for the Chameleon Clustering Algorithm using Dynamic Modeling
نویسندگان
چکیده
منابع مشابه
Parallel Algorithm for the Chameleon Clustering Algorithm using Dynamic Modeling
With the increasing size of data-sets in application areas like bio-medical, hospitals, information systems, scientific data processing and predictions, finance analytics, communications, retail and marketing, it is becoming increasingly important to execute data mining tasks in parallel. At the same time, technological advancements have made shared memoryparallel computation machines commonly ...
متن کاملCHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling
Clustering in data mining is a discovery process that groups a set of data such that the intracluster similarity is maximized and the intercluster similarity is minimized. Existing clustering algorithms, such as K -means, PAM, CLARANS, DBSCAN, CURE, and ROCK are designed to find clusters that fit some static models. These algorithms can breakdown if the choice of parameters in the static model ...
متن کاملChameleon: Hierarchical Clustering Using Dynamic Modeling
68 Computer C lustering is a discovery process in data mining. 1 It groups a set of data in a way that maximizes the similarity within clusters and minimizes the similarity between two different clusters. 1,2 These discovered clusters can help explain the characteristics of the underlying data distribution and serve as the foundation for other data mining and analysis techniques. Clustering is ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولClustering Of Web Usage Data Using Chameleon Algorithm
Clustering is a discovery process in data mining which groups set of data items, in such a way that maximizes the similarity within clusters and minimizes the similarity between two different clusters. These discovered clusters depict the characteristics of the underlying data distribution. Clustering is useful in characterizing customer groups based on purchasing patterns, categorizing web doc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/13760-1600